![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneqeql2 | GIF version |
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
fneqeql2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneqeql 5275 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | |
2 | inss1 3157 | . . . . . 6 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
3 | dmss 4534 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹 |
5 | fndm 4998 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 5 | adantr 261 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
7 | 4, 6 | syl5sseq 2993 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) ⊆ 𝐴) |
8 | 7 | biantrurd 289 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹 ∩ 𝐺) ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)))) |
9 | eqss 2960 | . . 3 ⊢ (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | |
10 | 8, 9 | syl6rbbr 188 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
11 | 1, 10 | bitrd 177 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∩ cin 2916 ⊆ wss 2917 dom cdm 4345 Fn wfn 4897 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fn 4905 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |