ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneqeql2 Structured version   GIF version

Theorem fneqeql2 5219
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2 ((𝐹 Fn A 𝐺 Fn A) → (𝐹 = 𝐺A ⊆ dom (𝐹𝐺)))

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 5218 . 2 ((𝐹 Fn A 𝐺 Fn A) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = A))
2 inss1 3151 . . . . . 6 (𝐹𝐺) ⊆ 𝐹
3 dmss 4477 . . . . . 6 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
42, 3ax-mp 7 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐹
5 fndm 4941 . . . . . 6 (𝐹 Fn A → dom 𝐹 = A)
65adantr 261 . . . . 5 ((𝐹 Fn A 𝐺 Fn A) → dom 𝐹 = A)
74, 6syl5sseq 2987 . . . 4 ((𝐹 Fn A 𝐺 Fn A) → dom (𝐹𝐺) ⊆ A)
87biantrurd 289 . . 3 ((𝐹 Fn A 𝐺 Fn A) → (A ⊆ dom (𝐹𝐺) ↔ (dom (𝐹𝐺) ⊆ A A ⊆ dom (𝐹𝐺))))
9 eqss 2954 . . 3 (dom (𝐹𝐺) = A ↔ (dom (𝐹𝐺) ⊆ A A ⊆ dom (𝐹𝐺)))
108, 9syl6rbbr 188 . 2 ((𝐹 Fn A 𝐺 Fn A) → (dom (𝐹𝐺) = AA ⊆ dom (𝐹𝐺)))
111, 10bitrd 177 1 ((𝐹 Fn A 𝐺 Fn A) → (𝐹 = 𝐺A ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  cin 2910  wss 2911  dom cdm 4288   Fn wfn 4840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator