Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1i GIF version

Theorem fneq1i 4993
 Description: Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
fneq1i.1 𝐹 = 𝐺
Assertion
Ref Expression
fneq1i (𝐹 Fn 𝐴𝐺 Fn 𝐴)

Proof of Theorem fneq1i
StepHypRef Expression
1 fneq1i.1 . 2 𝐹 = 𝐺
2 fneq1 4987 . 2 (𝐹 = 𝐺 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
31, 2ax-mp 7 1 (𝐹 Fn 𝐴𝐺 Fn 𝐴)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1243   Fn wfn 4897 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904  df-fn 4905 This theorem is referenced by:  fnunsn  5006  fnopabg  5022  f1oun  5146  f1oi  5164  f1osn  5166  ovid  5617  tfri1d  5949  frec2uzrand  9191  frec2uzf1od  9192  frecuzrdgrom  9196  frecfzennn  9203
 Copyright terms: Public domain W3C validator