![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnbr | GIF version |
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
Ref | Expression |
---|---|
fnbr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 4997 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | releldm 4569 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) | |
3 | 1, 2 | sylan 267 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) |
4 | fndm 4998 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2107 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
6 | 5 | biimpa 280 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ dom 𝐹) → 𝐵 ∈ 𝐴) |
7 | 3, 6 | syldan 266 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1393 class class class wbr 3764 dom cdm 4345 Rel wrel 4350 Fn wfn 4897 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-dm 4355 df-fun 4904 df-fn 4905 |
This theorem is referenced by: fnop 5002 dffn5im 5219 dffo4 5315 dffo5 5316 tfrlem5 5930 |
Copyright terms: Public domain | W3C validator |