![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftrel | GIF version |
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftrel | ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
2 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
3 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
4 | opelxpi 4376 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
5 | 2, 3, 4 | syl2anc 391 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) |
6 | eqid 2040 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
7 | 5, 6 | fmptd 5322 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆)) |
8 | frn 5052 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑅 × 𝑆) → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ⊆ (𝑅 × 𝑆)) |
10 | 1, 9 | syl5eqss 2989 | 1 ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 ⊆ wss 2917 〈cop 3378 ↦ cmpt 3818 × cxp 4343 ran crn 4346 ⟶wf 4898 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fv 4910 |
This theorem is referenced by: fliftcnv 5435 fliftfun 5436 fliftf 5439 qliftrel 6185 |
Copyright terms: Public domain | W3C validator |