![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftel1 | GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
3 | opexg 3964 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ V) | |
4 | 1, 2, 3 | syl2anc 391 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
5 | eqid 2040 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
6 | 5 | elrnmpt1 4585 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 〈𝐴, 𝐵〉 ∈ V) → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
7 | 6 | adantll 445 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 〈𝐴, 𝐵〉 ∈ V) → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
8 | 4, 7 | mpdan 398 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
9 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
10 | 8, 9 | syl6eleqr 2131 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ 𝐹) |
11 | df-br 3765 | . 2 ⊢ (𝐴𝐹𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹) | |
12 | 10, 11 | sylibr 137 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 Vcvv 2557 〈cop 3378 class class class wbr 3764 ↦ cmpt 3818 ran crn 4346 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-mpt 3820 df-cnv 4353 df-dm 4355 df-rn 4356 |
This theorem is referenced by: fliftfun 5436 qliftel1 6187 |
Copyright terms: Public domain | W3C validator |