ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel GIF version

Theorem fliftel 5433
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 3765 . . . 4 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹)
2 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32eleq2i 2104 . . . 4 (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
41, 3bitri 173 . . 3 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
5 flift.2 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴𝑅)
6 flift.3 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑆)
7 elex 2566 . . . . . . 7 (𝐴𝑅𝐴 ∈ V)
8 elex 2566 . . . . . . 7 (𝐵𝑆𝐵 ∈ V)
9 opexgOLD 3965 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
107, 8, 9syl2an 273 . . . . . 6 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
115, 6, 10syl2anc 391 . . . . 5 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
1211ralrimiva 2392 . . . 4 (𝜑 → ∀𝑥𝑋𝐴, 𝐵⟩ ∈ V)
13 eqid 2040 . . . . 5 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1413elrnmptg 4586 . . . 4 (∀𝑥𝑋𝐴, 𝐵⟩ ∈ V → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
1512, 14syl 14 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
164, 15syl5bb 181 . 2 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩))
17 opthg2 3976 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
185, 6, 17syl2anc 391 . . 3 ((𝜑𝑥𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
1918rexbidva 2323 . 2 (𝜑 → (∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
2016, 19bitrd 177 1 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  wrex 2307  Vcvv 2557  cop 3378   class class class wbr 3764  cmpt 3818  ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-mpt 3820  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  fliftcnv  5435  fliftfun  5436  fliftf  5439  fliftval  5440  qliftel  6186
  Copyright terms: Public domain W3C validator