ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiunsnnn GIF version

Theorem fiunsnnn 6338
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
fiunsnnn (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)

Proof of Theorem fiunsnnn
StepHypRef Expression
1 simprr 484 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → 𝐴𝑁)
2 en2sn 6290 . . . 4 ((𝐵 ∈ (V ∖ 𝐴) ∧ 𝑁 ∈ ω) → {𝐵} ≈ {𝑁})
32ad2ant2lr 479 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → {𝐵} ≈ {𝑁})
4 simplr 482 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → 𝐵 ∈ (V ∖ 𝐴))
54eldifbd 2930 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → ¬ 𝐵𝐴)
6 disjsn 3432 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
75, 6sylibr 137 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∩ {𝐵}) = ∅)
8 elirr 4266 . . . . 5 ¬ 𝑁𝑁
9 disjsn 3432 . . . . 5 ((𝑁 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝑁)
108, 9mpbir 134 . . . 4 (𝑁 ∩ {𝑁}) = ∅
1110a1i 9 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝑁 ∩ {𝑁}) = ∅)
12 unen 6293 . . 3 (((𝐴𝑁 ∧ {𝐵} ≈ {𝑁}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑁 ∩ {𝑁}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁}))
131, 3, 7, 11, 12syl22anc 1136 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁}))
14 df-suc 4108 . 2 suc 𝑁 = (𝑁 ∪ {𝑁})
1513, 14syl6breqr 3804 1 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  cdif 2914  cun 2915  cin 2916  c0 3224  {csn 3375   class class class wbr 3764  suc csuc 4102  ωcom 4313  cen 6219  Fincfn 6221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-1o 6001  df-er 6106  df-en 6222
This theorem is referenced by:  php5fin  6339
  Copyright terms: Public domain W3C validator