ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidceq GIF version

Theorem fidceq 6330
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1𝑜 or to 2𝑜 but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
fidceq ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)

Proof of Theorem fidceq
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6241 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 113 . . 3 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
323ad2ant1 925 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
4 bren 6228 . . . . 5 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
54biimpi 113 . . . 4 (𝐴𝑥 → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
65ad2antll 460 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → ∃𝑓 𝑓:𝐴1-1-onto𝑥)
7 f1of 5126 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴𝑥)
87adantl 262 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴𝑥)
9 simpll2 944 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐵𝐴)
108, 9ffvelrnd 5303 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ 𝑥)
11 simplrl 487 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑥 ∈ ω)
12 elnn 4328 . . . . . . . 8 (((𝑓𝐵) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐵) ∈ ω)
1310, 11, 12syl2anc 391 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐵) ∈ ω)
14 simpll3 945 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝐶𝐴)
158, 14ffvelrnd 5303 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ 𝑥)
16 elnn 4328 . . . . . . . 8 (((𝑓𝐶) ∈ 𝑥𝑥 ∈ ω) → (𝑓𝐶) ∈ ω)
1715, 11, 16syl2anc 391 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝑓𝐶) ∈ ω)
18 nndceq 6077 . . . . . . 7 (((𝑓𝐵) ∈ ω ∧ (𝑓𝐶) ∈ ω) → DECID (𝑓𝐵) = (𝑓𝐶))
1913, 17, 18syl2anc 391 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID (𝑓𝐵) = (𝑓𝐶))
20 exmiddc 744 . . . . . 6 (DECID (𝑓𝐵) = (𝑓𝐶) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
2119, 20syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)))
22 f1of1 5125 . . . . . . . 8 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
2322adantl 262 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → 𝑓:𝐴1-1𝑥)
24 f1veqaeq 5408 . . . . . . 7 ((𝑓:𝐴1-1𝑥 ∧ (𝐵𝐴𝐶𝐴)) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
2523, 9, 14, 24syl12anc 1133 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
26 fveq2 5178 . . . . . . . 8 (𝐵 = 𝐶 → (𝑓𝐵) = (𝑓𝐶))
2726con3i 562 . . . . . . 7 (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶)
2827a1i 9 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (¬ (𝑓𝐵) = (𝑓𝐶) → ¬ 𝐵 = 𝐶))
2925, 28orim12d 700 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (((𝑓𝐵) = (𝑓𝐶) ∨ ¬ (𝑓𝐵) = (𝑓𝐶)) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶)))
3021, 29mpd 13 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
31 df-dc 743 . . . 4 (DECID 𝐵 = 𝐶 ↔ (𝐵 = 𝐶 ∨ ¬ 𝐵 = 𝐶))
3230, 31sylibr 137 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) ∧ 𝑓:𝐴1-1-onto𝑥) → DECID 𝐵 = 𝐶)
336, 32exlimddv 1778 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) ∧ (𝑥 ∈ ω ∧ 𝐴𝑥)) → DECID 𝐵 = 𝐶)
343, 33rexlimddv 2437 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wo 629  DECID wdc 742  w3a 885   = wceq 1243  wex 1381  wcel 1393  wrex 2307   class class class wbr 3764  ωcom 4313  wf 4898  1-1wf1 4899  1-1-ontowf1o 4901  cfv 4902  cen 6219  Fincfn 6221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-en 6222  df-fin 6224
This theorem is referenced by:  fidifsnen  6331  fidifsnid  6332
  Copyright terms: Public domain W3C validator