Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  falxortru Structured version   GIF version

Theorem falxortru 1295
 Description: A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
Assertion
Ref Expression
falxortru (( ⊥ ⊻ ⊤ ) ↔ ⊤ )

Proof of Theorem falxortru
StepHypRef Expression
1 df-xor 1252 . 2 (( ⊥ ⊻ ⊤ ) ↔ (( ⊥ ⊤ ) ¬ ( ⊥ ⊤ )))
2 falortru 1281 . . 3 (( ⊥ ⊤ ) ↔ ⊤ )
3 notfal 1288 . . . 4 (¬ ⊥ ↔ ⊤ )
4 falantru 1277 . . . 4 (( ⊥ ⊤ ) ↔ ⊥ )
53, 4xchnxbir 593 . . 3 (¬ ( ⊥ ⊤ ) ↔ ⊤ )
62, 5anbi12i 436 . 2 ((( ⊥ ⊤ ) ¬ ( ⊥ ⊤ )) ↔ ( ⊤ ⊤ ))
7 anidm 376 . 2 (( ⊤ ⊤ ) ↔ ⊤ )
81, 6, 73bitri 195 1 (( ⊥ ⊻ ⊤ ) ↔ ⊤ )
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 97   ↔ wb 98   ∨ wo 616   ⊤ wtru 1229   ⊥ wfal 1233   ⊻ wxo 1251 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-xor 1252 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator