ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falxortru GIF version

Theorem falxortru 1312
Description: A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
Assertion
Ref Expression
falxortru ((⊥ ⊻ ⊤) ↔ ⊤)

Proof of Theorem falxortru
StepHypRef Expression
1 df-xor 1267 . 2 ((⊥ ⊻ ⊤) ↔ ((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤)))
2 falortru 1298 . . 3 ((⊥ ∨ ⊤) ↔ ⊤)
3 notfal 1305 . . . 4 (¬ ⊥ ↔ ⊤)
4 falantru 1294 . . . 4 ((⊥ ∧ ⊤) ↔ ⊥)
53, 4xchnxbir 606 . . 3 (¬ (⊥ ∧ ⊤) ↔ ⊤)
62, 5anbi12i 433 . 2 (((⊥ ∨ ⊤) ∧ ¬ (⊥ ∧ ⊤)) ↔ (⊤ ∧ ⊤))
7 anidm 376 . 2 ((⊤ ∧ ⊤) ↔ ⊤)
81, 6, 73bitri 195 1 ((⊥ ⊻ ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 97  wb 98  wo 629  wtru 1244  wfal 1248  wxo 1266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-xor 1267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator