Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falimd | GIF version |
Description: The truth value ⊥ implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
falimd | ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | falim 1257 | . 2 ⊢ (⊥ → 𝜓) | |
2 | 1 | adantl 262 | 1 ⊢ ((𝜑 ∧ ⊥) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ⊥wfal 1248 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: bj-axemptylem 10012 |
Copyright terms: Public domain | W3C validator |