ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falimd GIF version

Theorem falimd 1258
Description: The truth value implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
falimd ((𝜑 ∧ ⊥) → 𝜓)

Proof of Theorem falimd
StepHypRef Expression
1 falim 1257 . 2 (⊥ → 𝜓)
21adantl 262 1 ((𝜑 ∧ ⊥) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wfal 1248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249
This theorem is referenced by:  bj-axemptylem  10012
  Copyright terms: Public domain W3C validator