Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falantru | GIF version |
Description: A ∧ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
Ref | Expression |
---|---|
falantru | ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 | . 2 ⊢ ((⊥ ∧ ⊤) → ⊥) | |
2 | falim 1257 | . 2 ⊢ (⊥ → (⊥ ∧ ⊤)) | |
3 | 1, 2 | impbii 117 | 1 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ⊤wtru 1244 ⊥wfal 1248 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: trubifal 1307 falxortru 1312 falxorfal 1313 |
Copyright terms: Public domain | W3C validator |