ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falantru GIF version

Theorem falantru 1294
Description: A identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
Assertion
Ref Expression
falantru ((⊥ ∧ ⊤) ↔ ⊥)

Proof of Theorem falantru
StepHypRef Expression
1 simpl 102 . 2 ((⊥ ∧ ⊤) → ⊥)
2 falim 1257 . 2 (⊥ → (⊥ ∧ ⊤))
31, 2impbii 117 1 ((⊥ ∧ ⊤) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98  wtru 1244  wfal 1248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249
This theorem is referenced by:  trubifal  1307  falxortru  1312  falxorfal  1313
  Copyright terms: Public domain W3C validator