ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw GIF version

Theorem f1opw 5707
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 5132 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
32simprbi 260 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
4 vex 2560 . . . 4 𝑎 ∈ V
54funimaex 4984 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
63, 5syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
7 f1ofun 5128 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
8 vex 2560 . . . 4 𝑏 ∈ V
98funimaex 4984 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
107, 9syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
111, 6, 10f1opw2 5706 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1393  Vcvv 2557  𝒫 cpw 3359  cmpt 3818  ccnv 4344  cima 4348  Fun wfun 4896  ontowfo 4900  1-1-ontowf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator