Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1cocnv1 | GIF version |
Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.) |
Ref | Expression |
---|---|
f1cocnv1 | ⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn 5137 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
2 | f1ococnv1 5155 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 I cid 4025 ◡ccnv 4344 ran crn 4346 ↾ cres 4347 ∘ ccom 4349 –1-1→wf1 4899 –1-1-onto→wf1o 4901 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 |
This theorem is referenced by: f1eqcocnv 5431 |
Copyright terms: Public domain | W3C validator |