ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdimp Structured version   GIF version

Theorem expdimp 246
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.)
Hypothesis
Ref Expression
exp3a.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
expdimp ((φ ψ) → (χθ))

Proof of Theorem expdimp
StepHypRef Expression
1 exp3a.1 . . 3 (φ → ((ψ χ) → θ))
21expd 245 . 2 (φ → (ψ → (χθ)))
32imp 115 1 ((φ ψ) → (χθ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  rexlimdvv  2433  reu6  2724  fun11iun  5090  poxp  5794  smoel  5856  iinerm  6114  prarloclemlo  6476  peano5uzti  8102  lbzbi  8307  ssfzo12bi  8831
  Copyright terms: Public domain W3C validator