ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1774
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (φ → (ψχ))
Assertion
Ref Expression
exlimdvv (φ → (xyψχ))
Distinct variable groups:   χ,x   φ,x   χ,y   φ,y
Allowed substitution hints:   ψ(x,y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (φ → (ψχ))
21exlimdv 1697 . 2 (φ → (yψχ))
32exlimdv 1697 1 (φ → (xyψχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1333  ax-gen 1335  ax-ie2 1380  ax-17 1416
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  euotd  3982  funopg  4877  th3qlem1  6144  fundmen  6222  addnq0mo  6430  mulnq0mo  6431  genprndl  6504  genprndu  6505  genpdisj  6506  mullocpr  6552  addsrmo  6671  mulsrmo  6672
  Copyright terms: Public domain W3C validator