ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv Structured version   GIF version

Theorem exlimdvv 1755
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (φ → (ψχ))
Assertion
Ref Expression
exlimdvv (φ → (xyψχ))
Distinct variable groups:   χ,x   φ,x   χ,y   φ,y
Allowed substitution hints:   ψ(x,y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (φ → (ψχ))
21exlimdv 1678 . 2 (φ → (yψχ))
32exlimdv 1678 1 (φ → (xyψχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1312  ax-gen 1314  ax-ie2 1360  ax-17 1396
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  euotd  3961  funopg  4856  th3qlem1  6115  addnq0mo  6296  mulnq0mo  6297  genprndl  6370  genprndu  6371  genpdisj  6372  mullocpr  6409  addsrmo  6489  mulsrmo  6490
  Copyright terms: Public domain W3C validator