![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 108 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1700 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie2 1383 ax-17 1419 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: fvmptdv2 5260 tfrlemi14d 5947 tfrexlem 5948 erref 6126 xpdom2 6305 phplem4dom 6324 phplem4on 6329 fidceq 6330 dif1en 6337 fin0 6342 fin0or 6343 genpml 6615 genpmu 6616 ltexprlemm 6698 ltexprlemfl 6707 ltexprlemfu 6709 nn1suc 7933 |
Copyright terms: Public domain | W3C validator |