ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2nf GIF version

Theorem eusv2nf 4188
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2nf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 1911 . . . 4 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfe1 1385 . . . . . . 7 𝑥𝑥 𝑦 = 𝐴
32nfeu 1919 . . . . . 6 𝑥∃!𝑦𝑥 𝑦 = 𝐴
4 eusv2.1 . . . . . . . . 9 𝐴 ∈ V
54isseti 2563 . . . . . . . 8 𝑦 𝑦 = 𝐴
6 19.8a 1482 . . . . . . . . 9 (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
76ancri 307 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
85, 7eximii 1493 . . . . . . 7 𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)
9 eupick 1979 . . . . . . 7 ((∃!𝑦𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
108, 9mpan2 401 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
113, 10alrimi 1415 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
12 nf3 1559 . . . . 5 (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
1311, 12sylibr 137 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
141, 13alrimi 1415 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
15 dfnfc2 3598 . . . 4 (∀𝑥 𝐴 ∈ V → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
1615, 4mpg 1340 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴)
1714, 16sylibr 137 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
18 eusvnfb 4186 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
194, 18mpbiran2 848 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
20 eusv2i 4187 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2119, 20sylbir 125 . 2 (𝑥𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2217, 21impbii 117 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wnf 1349  wex 1381  wcel 1393  ∃!weu 1900  wnfc 2165  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-sn 3381  df-pr 3382  df-uni 3581
This theorem is referenced by:  eusv2  4189
  Copyright terms: Public domain W3C validator