![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eupick | GIF version |
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing x such that φ is true, and there is also an x (actually the same one) such that φ and ψ are both true, then φ implies ψ regardless of x. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
eupick | ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 1929 | . 2 ⊢ (∃!xφ → ∃*xφ) | |
2 | mopick 1975 | . 2 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) | |
3 | 1, 2 | sylan 267 | 1 ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1378 ∃!weu 1897 ∃*wmo 1898 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 |
This theorem is referenced by: eupicka 1977 eupickb 1978 reupick 3215 reupick3 3216 copsexg 3972 eusv2nf 4154 funssres 4885 oprabid 5480 |
Copyright terms: Public domain | W3C validator |