![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eujust | GIF version |
Description: A soundness justification theorem for df-eu 1900, showing that the definition is equivalent to itself with its dummy variable renamed. Note that y and z needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
eujust | ⊢ (∃y∀x(φ ↔ x = y) ↔ ∃z∀x(φ ↔ x = z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1596 | . . . . 5 ⊢ (y = w → (x = y ↔ x = w)) | |
2 | 1 | bibi2d 221 | . . . 4 ⊢ (y = w → ((φ ↔ x = y) ↔ (φ ↔ x = w))) |
3 | 2 | albidv 1702 | . . 3 ⊢ (y = w → (∀x(φ ↔ x = y) ↔ ∀x(φ ↔ x = w))) |
4 | 3 | cbvexv 1792 | . 2 ⊢ (∃y∀x(φ ↔ x = y) ↔ ∃w∀x(φ ↔ x = w)) |
5 | equequ2 1596 | . . . . 5 ⊢ (w = z → (x = w ↔ x = z)) | |
6 | 5 | bibi2d 221 | . . . 4 ⊢ (w = z → ((φ ↔ x = w) ↔ (φ ↔ x = z))) |
7 | 6 | albidv 1702 | . . 3 ⊢ (w = z → (∀x(φ ↔ x = w) ↔ ∀x(φ ↔ x = z))) |
8 | 7 | cbvexv 1792 | . 2 ⊢ (∃w∀x(φ ↔ x = w) ↔ ∃z∀x(φ ↔ x = z)) |
9 | 4, 8 | bitri 173 | 1 ⊢ (∃y∀x(φ ↔ x = y) ↔ ∃z∀x(φ ↔ x = z)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∀wal 1240 = wceq 1242 ∃wex 1378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |