Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euex | GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1419 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | eu1 1925 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
3 | exsimpl 1508 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
4 | 2, 3 | sylbi 114 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 ∃wex 1381 [wsb 1645 ∃!weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 |
This theorem is referenced by: eu2 1944 eu3h 1945 eu5 1947 exmoeudc 1963 eupickbi 1982 2eu2ex 1989 euxfrdc 2727 repizf 3873 eusvnf 4185 eusvnfb 4186 tz6.12c 5203 ndmfvg 5204 nfvres 5206 0fv 5208 eusvobj2 5498 fnoprabg 5602 |
Copyright terms: Public domain | W3C validator |