ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabex Structured version   GIF version

Theorem euabex 3913
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!xφ → {xφ} V)

Proof of Theorem euabex
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3390 . 2 (∃!xφy{xφ} = {y})
2 vex 2536 . . . . 5 y V
3 snexgOLD 3887 . . . . 5 (y V → {y} V)
42, 3ax-mp 7 . . . 4 {y} V
5 eleq1 2082 . . . 4 ({xφ} = {y} → ({xφ} V ↔ {y} V))
64, 5mpbiri 157 . . 3 ({xφ} = {y} → {xφ} V)
76exlimiv 1472 . 2 (y{xφ} = {y} → {xφ} V)
81, 7sylbi 114 1 (∃!xφ → {xφ} V)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1361   = wceq 1373   wcel 1375  ∃!weu 1881  {cab 2008  Vcvv 2533  {csn 3327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1315  ax-7 1316  ax-gen 1317  ax-ie1 1362  ax-ie2 1363  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2004  ax-sep 3827  ax-pow 3879
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1329  df-sb 1628  df-eu 1884  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2535  df-in 2902  df-ss 2909  df-pw 3313  df-sn 3333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator