![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu5 | GIF version |
Description: Uniqueness in terms of "at most one." (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
Ref | Expression |
---|---|
eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1930 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
2 | eumo 1932 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
3 | 1, 2 | jca 290 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
4 | df-mo 1904 | . . . . 5 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
5 | 4 | biimpi 113 | . . . 4 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
6 | 5 | imp 115 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑) |
7 | 6 | ancoms 255 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑) |
8 | 3, 7 | impbii 117 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∃wex 1381 ∃!weu 1900 ∃*wmo 1901 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 |
This theorem is referenced by: exmoeu2 1948 euan 1956 eu4 1962 euim 1968 euexex 1985 2euex 1987 2euswapdc 1991 2exeu 1992 reu5 2522 reuss2 3217 funcnv3 4961 fnres 5015 fnopabg 5022 brprcneu 5171 dff3im 5312 recmulnqg 6489 |
Copyright terms: Public domain | W3C validator |