Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu1 GIF version

Theorem eu1 1925
 Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
Hypothesis
Ref Expression
eu1.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
eu1 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu1
StepHypRef Expression
1 hbs1 1814 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
21euf 1905 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
3 eu1.1 . . 3 (𝜑 → ∀𝑦𝜑)
43sb8euh 1923 . 2 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
5 equcom 1593 . . . . . . 7 (𝑥 = 𝑦𝑦 = 𝑥)
65imbi2i 215 . . . . . 6 (([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
76albii 1359 . . . . 5 (∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
83sb6rf 1733 . . . . 5 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
97, 8anbi12i 433 . . . 4 ((∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)))
10 ancom 253 . . . 4 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦) ∧ 𝜑))
11 albiim 1376 . . . 4 (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ↔ (∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥) ∧ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)))
129, 10, 113bitr4i 201 . . 3 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
1312exbii 1496 . 2 (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ∃𝑥𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑥))
142, 4, 133bitr4i 201 1 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98  ∀wal 1241  ∃wex 1381  [wsb 1645  ∃!weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903 This theorem is referenced by:  euex  1930  eu2  1944
 Copyright terms: Public domain W3C validator