Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 2998
 Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 2997 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2043 1 (𝐵 = 𝐴𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ⊆ wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931 This theorem is referenced by:  disjeq2  3749  disjeq1  3752  poeq2  4037  seeq1  4076  seeq2  4077  dmcoeq  4604  xp11m  4759  funeq  4921  fconst3m  5380  tposeq  5862
 Copyright terms: Public domain W3C validator