ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 Structured version   GIF version

Theorem eqimss2 2992
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (B = AAB)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 2991 . 2 (A = BAB)
21eqcoms 2040 1 (B = AAB)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242  wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925
This theorem is referenced by:  disjeq2  3740  disjeq1  3743  poeq2  4028  seeq1  4061  seeq2  4062  dmcoeq  4547  xp11m  4702  funeq  4864  fconst3m  5323  tposeq  5803
  Copyright terms: Public domain W3C validator