ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 GIF version

Theorem eqfnfv2 5266
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4535 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
2 fndm 4998 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 fndm 4998 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3eqeqan12d 2055 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 = dom 𝐺𝐴 = 𝐵))
51, 4syl5ib 143 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺𝐴 = 𝐵))
65pm4.71rd 374 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵𝐹 = 𝐺)))
7 fneq2 4988 . . . . . 6 (𝐴 = 𝐵 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
87biimparc 283 . . . . 5 ((𝐺 Fn 𝐵𝐴 = 𝐵) → 𝐺 Fn 𝐴)
9 eqfnfv 5265 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9sylan2 270 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵𝐴 = 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1110anassrs 380 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐴 = 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1211pm5.32da 425 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴 = 𝐵𝐹 = 𝐺) ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
136, 12bitrd 177 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wral 2306  dom cdm 4345   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  eqfnfv3  5267  eqfunfv  5270  eqfnov  5607  2ffzeq  8998
  Copyright terms: Public domain W3C validator