Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdiv GIF version

Theorem eqbrrdiv 4438
 Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1 Rel 𝐴
eqbrrdiv.2 Rel 𝐵
eqbrrdiv.3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
Assertion
Ref Expression
eqbrrdiv (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2 Rel 𝐴
2 eqbrrdiv.2 . 2 Rel 𝐵
3 eqbrrdiv.3 . . 3 (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))
4 df-br 3765 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 3765 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3g 211 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
71, 2, 6eqrelrdv 4436 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243   ∈ wcel 1393  ⟨cop 3378   class class class wbr 3764  Rel wrel 4350 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator