Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ensymd | GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 6261. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 6261 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 class class class wbr 3764 ≈ cen 6219 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-er 6106 df-en 6222 |
This theorem is referenced by: f1imaeng 6272 f1imaen2g 6273 en2sn 6290 xpdom3m 6308 phplem4 6318 phplem4dom 6324 php5dom 6325 phpm 6327 phplem4on 6329 dif1en 6337 fisbth 6340 fin0 6342 fin0or 6343 fientri3 6353 uzenom 9202 |
Copyright terms: Public domain | W3C validator |