ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensymd GIF version

Theorem ensymd 6263
Description: Symmetry of equinumerosity. Deduction form of ensym 6261. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ensymd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ensymd (𝜑𝐵𝐴)

Proof of Theorem ensymd
StepHypRef Expression
1 ensymd.1 . 2 (𝜑𝐴𝐵)
2 ensym 6261 . 2 (𝐴𝐵𝐵𝐴)
31, 2syl 14 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 3764  cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-er 6106  df-en 6222
This theorem is referenced by:  f1imaeng  6272  f1imaen2g  6273  en2sn  6290  xpdom3m  6308  phplem4  6318  phplem4dom  6324  php5dom  6325  phpm  6327  phplem4on  6329  dif1en  6337  fisbth  6340  fin0  6342  fin0or  6343  fientri3  6353  uzenom  9202
  Copyright terms: Public domain W3C validator