Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp GIF version

Theorem elxp 4362
 Description: Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 4351 . . 3 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
21eleq2i 2104 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
3 elopab 3995 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
42, 3bitri 173 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98   = wceq 1243  ∃wex 1381   ∈ wcel 1393  ⟨cop 3378  {copab 3817   × cxp 4343 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351 This theorem is referenced by:  elxp2  4363  0nelxp  4372  0nelelxp  4373  rabxp  4380  elxp3  4394  elvv  4402  elvvv  4403  0xp  4420  xpmlem  4744  elxp4  4808  elxp5  4809  dfco2a  4821  opabex3d  5748  opabex3  5749  xp1st  5792  xp2nd  5793  poxp  5853  xpsnen  6295  xpcomco  6300  xpassen  6304  nqnq0pi  6536
 Copyright terms: Public domain W3C validator