ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniimadm Structured version   GIF version

Theorem eluniimadm 5327
Description: Membership in the union of an image of a function. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
eluniimadm (𝐹 Fn A → (B (𝐹A) ↔ x A B (𝐹x)))
Distinct variable groups:   x,A   x,B   x,𝐹

Proof of Theorem eluniimadm
StepHypRef Expression
1 eliun 3634 . 2 (B x A (𝐹x) ↔ x A B (𝐹x))
2 funiunfvdm 5325 . . 3 (𝐹 Fn A x A (𝐹x) = (𝐹A))
32eleq2d 2090 . 2 (𝐹 Fn A → (B x A (𝐹x) ↔ B (𝐹A)))
41, 3syl5rbbr 184 1 (𝐹 Fn A → (B (𝐹A) ↔ x A B (𝐹x)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   wcel 1375  wrex 2284   cuni 3553   ciun 3630  cima 4273   Fn wfn 4822  cfv 4827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005  ax-sep 3848  ax-pow 3900  ax-pr 3917
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1629  df-eu 1886  df-mo 1887  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-ral 2288  df-rex 2289  df-v 2536  df-sbc 2741  df-un 2898  df-in 2900  df-ss 2907  df-pw 3335  df-sn 3355  df-pr 3356  df-op 3358  df-uni 3554  df-iun 3632  df-br 3738  df-opab 3792  df-mpt 3793  df-id 4003  df-xp 4276  df-rel 4277  df-cnv 4278  df-co 4279  df-dm 4280  df-rn 4281  df-res 4282  df-ima 4283  df-iota 4792  df-fun 4829  df-fn 4830  df-fv 4835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator