Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpi GIF version

Theorem eltpi 3417
 Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 3416 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
21ibi 165 1 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ w3o 884   = wceq 1243   ∈ wcel 1393  {ctp 3377 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3or 886  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-tp 3383 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator