ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsncg Structured version   GIF version

Theorem elsncg 3389
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsncg (A 𝑉 → (A {B} ↔ A = B))

Proof of Theorem elsncg
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2043 . 2 (x = A → (x = BA = B))
2 df-sn 3373 . 2 {B} = {xx = B}
31, 2elab2g 2683 1 (A 𝑉 → (A {B} ↔ A = B))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242   wcel 1390  {csn 3367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sn 3373
This theorem is referenced by:  elsnc  3390  elsni  3391  snidg  3392  eltpg  3407  eldifsn  3486  elsucg  4107  funconstss  5228  fniniseg  5230  fniniseg2  5232  ltxr  8445  elfzp12  8711  1exp  8918
  Copyright terms: Public domain W3C validator