ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m Structured version   GIF version

Theorem elqsn0m 6110
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m ((dom 𝑅 = A B (A / 𝑅)) → x x B)
Distinct variable groups:   x,𝑅   x,A   x,B

Proof of Theorem elqsn0m
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 eqid 2037 . 2 (A / 𝑅) = (A / 𝑅)
2 eleq2 2098 . . 3 ([y]𝑅 = B → (x [y]𝑅x B))
32exbidv 1703 . 2 ([y]𝑅 = B → (x x [y]𝑅x x B))
4 eleq2 2098 . . . 4 (dom 𝑅 = A → (y dom 𝑅y A))
54biimpar 281 . . 3 ((dom 𝑅 = A y A) → y dom 𝑅)
6 ecdmn0m 6084 . . 3 (y dom 𝑅x x [y]𝑅)
75, 6sylib 127 . 2 ((dom 𝑅 = A y A) → x x [y]𝑅)
81, 3, 7ectocld 6108 1 ((dom 𝑅 = A B (A / 𝑅)) → x x B)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  wex 1378   wcel 1390  dom cdm 4288  [cec 6040   / cqs 6041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-ec 6044  df-qs 6048
This theorem is referenced by:  elqsn0  6111  ecelqsdm  6112
  Copyright terms: Public domain W3C validator