Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elqsn0m | GIF version |
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.) |
Ref | Expression |
---|---|
elqsn0m | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2101 | . . 3 ⊢ ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | exbidv 1706 | . 2 ⊢ ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
4 | eleq2 2101 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | biimpar 281 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ dom 𝑅) |
6 | ecdmn0m 6148 | . . 3 ⊢ (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅) | |
7 | 5, 6 | sylib 127 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅) |
8 | 1, 3, 7 | ectocld 6172 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 dom cdm 4345 [cec 6104 / cqs 6105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-ec 6108 df-qs 6112 |
This theorem is referenced by: elqsn0 6175 ecelqsdm 6176 |
Copyright terms: Public domain | W3C validator |