Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elioore | GIF version |
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elioore | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 8779 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
2 | 3ancomb 893 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
3 | xrre2 8734 | . . 3 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) | |
4 | 2, 3 | sylanb 268 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) |
5 | 1, 4 | sylbi 114 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 ∈ wcel 1393 class class class wbr 3764 (class class class)co 5512 ℝcr 6888 ℝ*cxr 7059 < clt 7060 (,)cioo 8757 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-pre-ltirr 6996 ax-pre-ltwlin 6997 ax-pre-lttrn 6998 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-po 4033 df-iso 4034 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 df-ioo 8761 |
This theorem is referenced by: iooval2 8784 elioo4g 8803 ioossre 8804 |
Copyright terms: Public domain | W3C validator |