Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfv GIF version

Theorem elfv 5176
 Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 5173 . . 3 (𝐹𝐵) = {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)}
21eleq2i 2104 . 2 (𝐴 ∈ (𝐹𝐵) ↔ 𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)})
3 eluniab 3592 . 2 (𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)} ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
42, 3bitri 173 1 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98  ∀wal 1241  ∃wex 1381   ∈ wcel 1393  {cab 2026  ∪ cuni 3580   class class class wbr 3764  ‘cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-sn 3381  df-uni 3581  df-iota 4867  df-fv 4910 This theorem is referenced by:  fv3  5197  relelfvdm  5205
 Copyright terms: Public domain W3C validator