![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
eleqtrrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2045 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | eleqtrd 2116 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: 3eltr4d 2121 tfrexlem 5948 erref 6126 en1uniel 6284 fin0 6342 fin0or 6343 prarloclemarch2 6517 fzopth 8924 fzoss2 9028 fzosubel3 9052 elfzomin 9062 elfzonlteqm1 9066 fzoend 9078 fzofzp1 9083 fzofzp1b 9084 peano2fzor 9088 frecuzrdgcl 9199 frecuzrdg0 9200 frecuzrdgsuc 9201 |
Copyright terms: Public domain | W3C validator |