![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eleq1i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eleq1 2100 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 ∈ wcel 1393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: eleq12i 2105 eqeltri 2110 intexrabim 3907 abssexg 3934 snnex 4181 pwexb 4206 sucexb 4223 omex 4316 iprc 4600 dfse2 4698 fressnfv 5350 fnotovb 5548 f1stres 5786 f2ndres 5787 ottposg 5870 dftpos4 5878 frecabex 5984 oacl 6040 diffifi 6351 pitonn 6924 axicn 6939 pnfnre 7067 mnfnre 7068 0mnnnnn0 8214 bj-sucexg 10042 |
Copyright terms: Public domain | W3C validator |