ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq1i Structured version   GIF version

Theorem eleq1i 2100
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
eleq1i.1 A = B
Assertion
Ref Expression
eleq1i (A 𝐶B 𝐶)

Proof of Theorem eleq1i
StepHypRef Expression
1 eleq1i.1 . 2 A = B
2 eleq1 2097 . 2 (A = B → (A 𝐶B 𝐶))
31, 2ax-mp 7 1 (A 𝐶B 𝐶)
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1242   wcel 1390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033
This theorem is referenced by:  eleq12i  2102  eqeltri  2107  intexrabim  3898  abssexg  3925  snnex  4147  pwexb  4172  sucexb  4189  omex  4259  iprc  4543  dfse2  4641  fressnfv  5293  fnotovb  5490  f1stres  5728  f2ndres  5729  ottposg  5811  dftpos4  5819  frecabex  5923  oacl  5979  pitonn  6704  axicn  6709  pnfnre  6824  mnfnre  6825  0mnnnnn0  7950  bj-sucexg  9307
  Copyright terms: Public domain W3C validator