Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab4g GIF version

Theorem elab4g 2691
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab4g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab4g (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab4g
StepHypRef Expression
1 elex 2566 . 2 (𝐴𝐵𝐴 ∈ V)
2 elab4g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab4g.2 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 2689 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4biadan2 429 1 (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393  {cab 2026  Vcvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator