ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab Structured version   GIF version

Theorem elab 2681
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
elab.1 A V
elab.2 (x = A → (φψ))
Assertion
Ref Expression
elab (A {xφ} ↔ ψ)
Distinct variable groups:   ψ,x   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem elab
StepHypRef Expression
1 nfv 1418 . 2 xψ
2 elab.1 . 2 A V
3 elab.2 . 2 (x = A → (φψ))
41, 2, 3elabf 2680 1 (A {xφ} ↔ ψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242   wcel 1390  {cab 2023  Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553
This theorem is referenced by:  ralab  2695  rexab  2697  intab  3635  dfiin2g  3681  dfiunv2  3684  uniuni  4149  peano5  4264  finds  4266  finds2  4267  funcnvuni  4911  fun11iun  5090  elabrex  5340  abrexco  5341  indpi  6326  nqprm  6524  nqprrnd  6525  nqprdisj  6526  nqprloc  6527  nqprl  6532  cauappcvgprlem2  6631  1nn  7686  peano2nn  7687  dfuzi  8104  bj-ssom  9370
  Copyright terms: Public domain W3C validator