Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecase23d GIF version

Theorem ecase23d 1240
 Description: Variation of ecased 1239 with three disjuncts instead of two. (Contributed by NM, 22-Apr-1994.) (Revised by Jim Kingdon, 9-Dec-2017.)
Hypotheses
Ref Expression
ecase23d.1 (𝜑 → ¬ 𝜒)
ecase23d.2 (𝜑 → ¬ 𝜃)
ecase23d.3 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
ecase23d (𝜑𝜓)

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.1 . 2 (𝜑 → ¬ 𝜒)
2 ecase23d.2 . . 3 (𝜑 → ¬ 𝜃)
3 ecase23d.3 . . . 4 (𝜑 → (𝜓𝜒𝜃))
4 df-3or 886 . . . 4 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∨ 𝜃))
53, 4sylib 127 . . 3 (𝜑 → ((𝜓𝜒) ∨ 𝜃))
62, 5ecased 1239 . 2 (𝜑 → (𝜓𝜒))
71, 6ecased 1239 1 (𝜑𝜓)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 629   ∨ w3o 884 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-3or 886 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator