ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpinm GIF version

Theorem dmxpinm 4556
Description: The domain of the intersection of two square cross products. Unlike dmin 4543, equality holds. (Contributed by NM, 29-Jan-2008.)
Assertion
Ref Expression
dmxpinm (∃𝑥 𝑥 ∈ (𝐴𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dmxpinm
StepHypRef Expression
1 inxp 4470 . . . 4 ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = ((𝐴𝐵) × (𝐴𝐵))
21dmeqi 4536 . . 3 dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴𝐵) × (𝐴𝐵))
32a1i 9 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴𝐵) × (𝐴𝐵)))
4 dmxpm 4555 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → dom ((𝐴𝐵) × (𝐴𝐵)) = (𝐴𝐵))
53, 4eqtrd 2072 1 (∃𝑥 𝑥 ∈ (𝐴𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wex 1381  wcel 1393  cin 2916   × cxp 4343  dom cdm 4345
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-dm 4355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator