![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmresv | GIF version |
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
Ref | Expression |
---|---|
dmresv | ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4632 | . 2 ⊢ dom (𝐴 ↾ V) = (V ∩ dom 𝐴) | |
2 | incom 3129 | . 2 ⊢ (V ∩ dom 𝐴) = (dom 𝐴 ∩ V) | |
3 | inv1 3253 | . 2 ⊢ (dom 𝐴 ∩ V) = dom 𝐴 | |
4 | 1, 2, 3 | 3eqtri 2064 | 1 ⊢ dom (𝐴 ↾ V) = dom 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 Vcvv 2557 ∩ cin 2916 dom cdm 4345 ↾ cres 4347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-dm 4355 df-res 4357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |