Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmp | GIF version |
Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
dmmp | ⊢ dom ·P = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-imp 6567 | . 2 ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑣 ∈ Q ∣ ∃𝑤 ∈ Q ∃𝑧 ∈ Q (𝑤 ∈ (1st ‘𝑥) ∧ 𝑧 ∈ (1st ‘𝑦) ∧ 𝑣 = (𝑤 ·Q 𝑧))}, {𝑣 ∈ Q ∣ ∃𝑤 ∈ Q ∃𝑧 ∈ Q (𝑤 ∈ (2nd ‘𝑥) ∧ 𝑧 ∈ (2nd ‘𝑦) ∧ 𝑣 = (𝑤 ·Q 𝑧))}〉) | |
2 | mulclnq 6474 | . 2 ⊢ ((𝑤 ∈ Q ∧ 𝑧 ∈ Q) → (𝑤 ·Q 𝑧) ∈ Q) | |
3 | 1, 2 | genipdm 6614 | 1 ⊢ dom ·P = (P × P) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 × cxp 4343 dom cdm 4345 ·Q cmq 6381 Pcnp 6389 ·P cmp 6392 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-oadd 6005 df-omul 6006 df-er 6106 df-ec 6108 df-qs 6112 df-ni 6402 df-mi 6404 df-mpq 6443 df-enq 6445 df-nqqs 6446 df-mqqs 6448 df-imp 6567 |
This theorem is referenced by: mulassprg 6679 |
Copyright terms: Public domain | W3C validator |