Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcnvcnv Structured version   GIF version

Theorem dmcnvcnv 4501
 Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 4714). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom A = dom A

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 4470 . 2 dom A = ran A
2 df-rn 4299 . 2 ran A = dom A
31, 2eqtr2i 2058 1 dom A = dom A
 Colors of variables: wff set class Syntax hints:   = wceq 1242  ◡ccnv 4287  dom cdm 4288  ran crn 4289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296  df-dm 4298  df-rn 4299 This theorem is referenced by:  resdm2  4754  f1cnvcnv  5043
 Copyright terms: Public domain W3C validator