ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcnvcnv GIF version

Theorem dmcnvcnv 4558
Description: The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 4771). (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
dmcnvcnv dom 𝐴 = dom 𝐴

Proof of Theorem dmcnvcnv
StepHypRef Expression
1 dfdm4 4527 . 2 dom 𝐴 = ran 𝐴
2 df-rn 4356 . 2 ran 𝐴 = dom 𝐴
31, 2eqtr2i 2061 1 dom 𝐴 = dom 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1243  ccnv 4344  dom cdm 4345  ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  resdm2  4811  f1cnvcnv  5100
  Copyright terms: Public domain W3C validator