ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnpssim GIF version

Theorem difsnpssim 3507
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if 𝐴 is a member of 𝐵. In classical logic, the converse holds as well. (Contributed by Jim Kingdon, 9-Aug-2018.)
Assertion
Ref Expression
difsnpssim (𝐴𝐵 → (𝐵 ∖ {𝐴}) ⊊ 𝐵)

Proof of Theorem difsnpssim
StepHypRef Expression
1 notnot 559 . 2 (𝐴𝐵 → ¬ ¬ 𝐴𝐵)
2 difss 3070 . . . 4 (𝐵 ∖ {𝐴}) ⊆ 𝐵
32biantrur 287 . . 3 ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
4 difsnb 3506 . . . 4 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
54necon3bbii 2242 . . 3 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵)
6 df-pss 2933 . . 3 ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
73, 5, 63bitr4i 201 . 2 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
81, 7sylib 127 1 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ⊊ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wcel 1393  wne 2204  cdif 2914  wss 2917  wpss 2918  {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-pss 2933  df-sn 3381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator