Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difrab0eqim | GIF version |
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
difrab0eqim | ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabeq 3026 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | |
2 | ssdif0im 3286 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) | |
3 | 1, 2 | sylbir 125 | 1 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 {crab 2310 ∖ cdif 2914 ⊆ wss 2917 ∅c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |