Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin0 GIF version

Theorem difin0 3297
 Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0 ((𝐴𝐵) ∖ 𝐵) = ∅

Proof of Theorem difin0
StepHypRef Expression
1 inss2 3158 . 2 (𝐴𝐵) ⊆ 𝐵
2 ssdif0im 3286 . 2 ((𝐴𝐵) ⊆ 𝐵 → ((𝐴𝐵) ∖ 𝐵) = ∅)
31, 2ax-mp 7 1 ((𝐴𝐵) ∖ 𝐵) = ∅
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∖ cdif 2914   ∩ cin 2916   ⊆ wss 2917  ∅c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator