ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1en GIF version

Theorem dif1en 6337
Description: If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)

Proof of Theorem dif1en
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp2 905 . . . 4 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ≈ suc 𝑀)
21ensymd 6263 . . 3 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀𝐴)
3 bren 6228 . . 3 (suc 𝑀𝐴 ↔ ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
42, 3sylib 127 . 2 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → ∃𝑓 𝑓:suc 𝑀1-1-onto𝐴)
5 peano2 4318 . . . . . . . 8 (𝑀 ∈ ω → suc 𝑀 ∈ ω)
6 nnfi 6333 . . . . . . . 8 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
75, 6syl 14 . . . . . . 7 (𝑀 ∈ ω → suc 𝑀 ∈ Fin)
873ad2ant1 925 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → suc 𝑀 ∈ Fin)
9 enfii 6335 . . . . . 6 ((suc 𝑀 ∈ Fin ∧ 𝐴 ≈ suc 𝑀) → 𝐴 ∈ Fin)
108, 1, 9syl2anc 391 . . . . 5 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝐴 ∈ Fin)
1110adantr 261 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝐴 ∈ Fin)
12 simpl3 909 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑋𝐴)
13 f1of 5126 . . . . . 6 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀𝐴)
1413adantl 262 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀𝐴)
15 sucidg 4153 . . . . . . 7 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
16153ad2ant1 925 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 ∈ suc 𝑀)
1716adantr 261 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ suc 𝑀)
1814, 17ffvelrnd 5303 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓𝑀) ∈ 𝐴)
19 fidifsnen 6331 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ (𝑓𝑀) ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
2011, 12, 18, 19syl3anc 1135 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
21 nnord 4334 . . . . . . . 8 (𝑀 ∈ ω → Ord 𝑀)
22 orddif 4271 . . . . . . . 8 (Ord 𝑀𝑀 = (suc 𝑀 ∖ {𝑀}))
2321, 22syl 14 . . . . . . 7 (𝑀 ∈ ω → 𝑀 = (suc 𝑀 ∖ {𝑀}))
24233ad2ant1 925 . . . . . 6 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2524adantr 261 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 = (suc 𝑀 ∖ {𝑀}))
2623eleq1d 2106 . . . . . . . . 9 (𝑀 ∈ ω → (𝑀 ∈ ω ↔ (suc 𝑀 ∖ {𝑀}) ∈ ω))
2726ibi 165 . . . . . . . 8 (𝑀 ∈ ω → (suc 𝑀 ∖ {𝑀}) ∈ ω)
28273ad2ant1 925 . . . . . . 7 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
2928adantr 261 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ∈ ω)
30 dff1o2 5131 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴 ↔ (𝑓 Fn suc 𝑀 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝐴))
3130simp2bi 920 . . . . . . . 8 (𝑓:suc 𝑀1-1-onto𝐴 → Fun 𝑓)
3231adantl 262 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Fun 𝑓)
33 f1ofo 5133 . . . . . . . . 9 (𝑓:suc 𝑀1-1-onto𝐴𝑓:suc 𝑀onto𝐴)
3433adantl 262 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓:suc 𝑀onto𝐴)
35 f1orel 5129 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → Rel 𝑓)
3635adantl 262 . . . . . . . . . . 11 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → Rel 𝑓)
37 resdm 4649 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
3836, 37syl 14 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = 𝑓)
39 f1odm 5130 . . . . . . . . . . . 12 (𝑓:suc 𝑀1-1-onto𝐴 → dom 𝑓 = suc 𝑀)
4039reseq2d 4612 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴 → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4140adantl 262 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ dom 𝑓) = (𝑓 ↾ suc 𝑀))
4238, 41eqtr3d 2074 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 = (𝑓 ↾ suc 𝑀))
43 foeq1 5102 . . . . . . . . 9 (𝑓 = (𝑓 ↾ suc 𝑀) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4442, 43syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓:suc 𝑀onto𝐴 ↔ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴))
4534, 44mpbid 135 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴)
46 simpl1 907 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ∈ ω)
47 f1osng 5167 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ (𝑓𝑀) ∈ 𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
4846, 18, 47syl2anc 391 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)})
49 f1ofo 5133 . . . . . . . . 9 ({⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–1-1-onto→{(𝑓𝑀)} → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
5048, 49syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)})
51 f1ofn 5127 . . . . . . . . . . 11 (𝑓:suc 𝑀1-1-onto𝐴𝑓 Fn suc 𝑀)
5251adantl 262 . . . . . . . . . 10 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑓 Fn suc 𝑀)
53 fnressn 5349 . . . . . . . . . 10 ((𝑓 Fn suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
5452, 17, 53syl2anc 391 . . . . . . . . 9 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩})
55 foeq1 5102 . . . . . . . . 9 ((𝑓 ↾ {𝑀}) = {⟨𝑀, (𝑓𝑀)⟩} → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5654, 55syl 14 . . . . . . . 8 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → ((𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)} ↔ {⟨𝑀, (𝑓𝑀)⟩}:{𝑀}–onto→{(𝑓𝑀)}))
5750, 56mpbird 156 . . . . . . 7 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)})
58 resdif 5148 . . . . . . 7 ((Fun 𝑓 ∧ (𝑓 ↾ suc 𝑀):suc 𝑀onto𝐴 ∧ (𝑓 ↾ {𝑀}):{𝑀}–onto→{(𝑓𝑀)}) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
5932, 45, 57, 58syl3anc 1135 . . . . . 6 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)}))
60 f1oeng 6237 . . . . . 6 (((suc 𝑀 ∖ {𝑀}) ∈ ω ∧ (𝑓 ↾ (suc 𝑀 ∖ {𝑀})):(suc 𝑀 ∖ {𝑀})–1-1-onto→(𝐴 ∖ {(𝑓𝑀)})) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6129, 59, 60syl2anc 391 . . . . 5 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (suc 𝑀 ∖ {𝑀}) ≈ (𝐴 ∖ {(𝑓𝑀)}))
6225, 61eqbrtrd 3784 . . . 4 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → 𝑀 ≈ (𝐴 ∖ {(𝑓𝑀)}))
6362ensymd 6263 . . 3 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
64 entr 6264 . . 3 (((𝐴 ∖ {𝑋}) ≈ (𝐴 ∖ {(𝑓𝑀)}) ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
6520, 63, 64syl2anc 391 . 2 (((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) ∧ 𝑓:suc 𝑀1-1-onto𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
664, 65exlimddv 1778 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  cdif 2914  {csn 3375  cop 3378   class class class wbr 3764  Ord word 4099  suc csuc 4102  ωcom 4313  ccnv 4344  dom cdm 4345  ran crn 4346  cres 4347  Rel wrel 4350  Fun wfun 4896   Fn wfn 4897  wf 4898  ontowfo 4900  1-1-ontowf1o 4901  cfv 4902  cen 6219  Fincfn 6221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-er 6106  df-en 6222  df-fin 6224
This theorem is referenced by:  findcard  6345  findcard2  6346  findcard2s  6347  diffisn  6350
  Copyright terms: Public domain W3C validator