ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftru2 Structured version   GIF version

Theorem dftru2 1236
Description: An alternate definition of "true". (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by BJ, 12-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
dftru2 ( ⊤ ↔ (φφ))

Proof of Theorem dftru2
StepHypRef Expression
1 tru 1232 . 2
2 id 19 . 2 (φφ)
31, 22th 163 1 ( ⊤ ↔ (φφ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wtru 1229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-tru 1231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator