ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss Structured version   GIF version

Theorem dfss 2926
Description: Variant of subclass definition df-ss 2925. (Contributed by NM, 3-Sep-2004.)
Assertion
Ref Expression
dfss (ABA = (AB))

Proof of Theorem dfss
StepHypRef Expression
1 df-ss 2925 . 2 (AB ↔ (AB) = A)
2 eqcom 2039 . 2 ((AB) = AA = (AB))
31, 2bitri 173 1 (ABA = (AB))
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1242  cin 2910  wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-ss 2925
This theorem is referenced by:  dfss2  2928  onelini  4133  cnvcnv  4716  funimass1  4919  dmaddpi  6309  dmmulpi  6310
  Copyright terms: Public domain W3C validator