Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 GIF version

Theorem dfrn2 4523
 Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4356 . 2 ran 𝐴 = dom 𝐴
2 df-dm 4355 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 2560 . . . . 5 𝑦 ∈ V
4 vex 2560 . . . . 5 𝑥 ∈ V
53, 4brcnv 4518 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1496 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2153 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2064 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
 Colors of variables: wff set class Syntax hints:   = wceq 1243  ∃wex 1381  {cab 2026   class class class wbr 3764  ◡ccnv 4344  dom cdm 4345  ran crn 4346 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356 This theorem is referenced by:  dfrn3  4524  dfdm4  4527  dm0rn0  4552  dmmrnm  4554  dfrnf  4575  dfima2  4670  funcnv3  4961
 Copyright terms: Public domain W3C validator