Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfrn2 | GIF version |
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4356 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | df-dm 4355 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
3 | vex 2560 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | vex 2560 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 4518 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
6 | 5 | exbii 1496 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
7 | 6 | abbii 2153 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
8 | 1, 2, 7 | 3eqtri 2064 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∃wex 1381 {cab 2026 class class class wbr 3764 ◡ccnv 4344 dom cdm 4345 ran crn 4346 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-cnv 4353 df-dm 4355 df-rn 4356 |
This theorem is referenced by: dfrn3 4524 dfdm4 4527 dm0rn0 4552 dmmrnm 4554 dfrnf 4575 dfima2 4670 funcnv3 4961 |
Copyright terms: Public domain | W3C validator |